Monads and Interpolads in Bicategories
نویسنده
چکیده
Given a bicategory, Y , with stable local coequalizers, we construct a bicategory of monads Y -mnd by using lax functors from the generic 0-cell, 1-cell and 2-cell, respectively, into Y . Any lax functor into Y factors through Y -mnd and the 1-cells turn out to be the familiar bimodules. The locally ordered bicategory rel and its bicategory of monads both fail to be Cauchy-complete, but have a well-known Cauchycompletion in common. This prompts us to formulate a concept of Cauchy-completeness for bicategories that are not locally ordered and suggests a weakening of the notion of monad. For this purpose, we develop a calculus of general modules between unstructured endo-1-cells. These behave well with respect to composition, but in general fail to have identities. To overcome this problem, we do not need to impose the full structure of a monad on endo-1-cells. We show that associative coequalizing multiplications suffice and call the resulting structures interpolads. Together with structure-preserving i-modules these form a bicategory Y -int that is indeed Cauchy-complete, in our sense, and contains the bicategory of monads as a not necessarily full sub-bicategory. Interpolads over rel are idempotent relations, over the suspension of set they correspond to interpolative semi-groups, and over spn they lead to a notion of “category without identities” also known as “taxonomy”. If Y locally has equalizers, then modules in general, and the bicategories Y -mnd and Y -int in particular, inherit the property of being closed with respect to 1-cell composition. Introduction Part of the original motivation for this work was to better understand, why the bicategory idl of pre-ordered sets, order-ideals, and inclusions inherits good properties from the bicategory rel of sets, relations and inclusions. Of particular interest was closedness with respect to 1-cell composition, also known as the existence of all right liftings and right extensions. The key observation is that pre-ordered sets can be viewed as monads in rel . Benabou [1] explicitly designed what is now known as lax functors to subsume the notion of monad, in this case as a lax functor from the terminal bicategory 1 to rel . To keep the paper reasonably self-contained, in Section 1 we recall the relevant definitions and establish our notation. Order-ideals, i.e., relations compatible with the orders on domain and codomain, do not correspond to the kind of morphisms that are usually considered between monads. Since ordinary morphisms in a category correspond to functors with domain 2 , the two-element chain or generic 1-cell, we introduce 1-cells between monads in terms of Received by the editors 1997 January 22 and, in revised form, 1997 September 24. Published on 1997 October 14 1991 Mathematics Subject Classification : 18D05.
منابع مشابه
Introduction to linear bicategories
Linear bicategories are a generalization of bicategories, in which the one horizontal composition is replaced by two (linked) horizontal compositions. These compositions provide a semantic model for the tensor and par of linear logic: in particular, as composition is fundamentally noncommutative, they provide a suggestive source of models for noncommutative linear logic. In a linear bicategory,...
متن کاملMinimal Realization in Bicategories of Automata
The context of this article is the program to develop monoidal bicategories with a feedback operation as an algebra of processes with applications to concurrency theory The objective here is to study reachability minimization and minimal realization in these bicategories In this set ting the automata are cells in contrast with previous studies where they appeared as objects As a consequence we ...
متن کاملA Unified Framework for Generalized Multicategories
Notions of generalized multicategory have been defined in numerous contexts throughout the literature, and include such diverse examples as symmetric multicategories, globular operads, Lawvere theories, and topological spaces. In each case, generalized multicategories are defined as the “lax algebras” or “Kleisli monoids” relative to a “monad” on a bicategory. However, the meanings of these wor...
متن کاملLeibniz’s Monads and Mulla Sadra’s Hierarchy of Being: A Comparative Study
Mulla Sadra and Leibniz, the two philosophers from the East and the West, belong to two different worlds. Though they were unaware of the ideas of each other, their philosophical systems share certain common points that are comparable. Monads constitute the basis of Leibniz's thought and he refers to their features in his various works. On the other side, Mulla Sadra's philosophy is also based ...
متن کاملEquivalences in Bicategories
In this paper, we establish some connections between the concept of an equivalence of categories and that of an equivalence in a bicategory. Its main result builds upon the observation that two closely related concepts, which could both play the role of an equivalence in a bicategory, turn out not to coincide. Two counterexamples are provided for that goal, and detailed proofs are given. In par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997